Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(6): e18147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429901

RESUMO

HCC is a globally high-incidence malignant tumour, and its pathogenesis is still unclear. Recently, STRN3 has been found to be elevated in various tumours, but its expression and biological functions in HCC have not been studied. In the study, clinical correlation analysis was performed on 371 liver cancer patients from TCGA database and liver cancer tissues and normal tissues from the GEO database. qRT-PCR and western blotting were used to detect relevant proteins in cells, and CCK8 and colony formation experiments were performed to analyse cell proliferation ability. Transwell and wound healing experiments were performed to detect cell invasion ability, and flow cytometry was used to detect cell apoptosis. Single-cell sequencing data and multiple immunofluorescence were analysed for the expression abundance and distribution of certain proteins. Immunohistochemistry was used to assess the expression of STRN3 in patients' tumour and adjacent non-cancerous tissues. The results indicated STRN3 was highly expressed in liver tumour tissues and was closely associated with poor prognosis. Knockdown of STRN3 could significantly inhibit cell proliferation and migration ability. At the same time, we found that STRN3 could inhibit the Hippo pathway and promote the entry of YAP protein into the nucleus. Our study first found that STRN3 could promote tumour growth by inhibiting the Hippo pathway. The study of STRN3 can promote the understanding and treatment of the occurrence and development of HCC.


Assuntos
Carcinoma Hepatocelular , Via de Sinalização Hippo , Neoplasias Hepáticas , Humanos , Autoantígenos , Proteínas de Ligação a Calmodulina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo/genética , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
2.
Cancer Med ; 13(3): e7038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38396367

RESUMO

BACKGROUND: The study focuses on PD-L1 expression as an essential biomarker for gauging the response of EGFR/ALK wild-type NSCLC patients to FDA-approved immune checkpoint inhibitors (ICIs). It aims to explore clinical, molecular, and immune microenvironment characteristics associated with PD-L1 expression in EGFR/ALK wild-type lung adenocarcinoma patients eligible for ICI therapy. METHODS: In this retrospective study, tumor samples from 359 Chinese EGFR/ALK wild-type lung adenocarcinoma patients underwent comprehensive evaluations for PD-L1 expression and NGS-targeted sequencing. The investigation encompassed the analysis and comparison of clinical traits, gene mutations, pathways, and immune signatures between two groups categorized by PD-L1 status: negative (TPS < 1%) and positive (TPS ≥ 1%). Additionally, the study explored the link between genomic changes and outcomes following immunotherapy. RESULTS: High tumor mutational burden correlated significantly with PD-L1 positivity in patients with EGFR/ALK wild-type lung adenocarcinoma. Gene alterations, including TP53, KRAS, and others, were more pronounced in the PD-L1 positive group. Pathway analysis highlighted higher frequencies of alterations in pathways like RTK/RAS, p53, and Hippo in PD-L1-positive patients. The Hippo pathway's relevance was confirmed in separate immunotherapy cohorts, associated with better outcomes. In terms of immune cell infiltration, Hippo mutants exhibited higher levels of CD68+ PD-L1+ macrophages, CD8+ T cells, and CD8+ PD-1- T cells. CONCLUSIONS: This study offers insights into genomic features of Chinese EGFR/ALK wild-type lung adenocarcinoma patients based on PD-L1 expression. Notably, Hippo pathway alterations were linked to improved immunotherapy outcomes. These findings suggest connections between the Hippo pathway and PD-L1 expression, warranting further clinical and functional investigations. The research advances our understanding of PD-L1 expression's genomic context and immunotherapy response in EGFR/ALK wild-type lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Quinase do Linfoma Anaplásico/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , China , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genômica , Via de Sinalização Hippo/genética , Imunoterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Estudos Retrospectivos , Microambiente Tumoral/genética
3.
Cell Rep ; 42(12): 113535, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060450

RESUMO

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Assuntos
Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Linhagem Celular , Camundongos Endogâmicos C57BL , Masculino , Feminino , Epinefrina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Deleção de Genes , Colforsina/farmacologia , Insulina/metabolismo , Fosforilação/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética
4.
Science ; 378(6621): eabg3679, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36395225

RESUMO

The Hippo signaling pathway is widely considered a master regulator of organ growth because of the prominent overgrowth phenotypes caused by experimental manipulation of its activity. Contrary to this model, we show here that removing Hippo transcriptional output did not impair the ability of the mouse liver and Drosophila eyes to grow to their normal size. Moreover, the transcriptional activity of the Hippo pathway effectors Yap/Taz/Yki did not correlate with cell proliferation, and hyperactivation of these effectors induced gene expression programs that did not recapitulate normal development. Concordantly, a functional screen in Drosophila identified several Hippo pathway target genes that were required for ectopic overgrowth but not normal growth. Thus, Hippo signaling does not instruct normal growth, and the Hippo-induced overgrowth phenotypes are caused by the activation of abnormal genetic programs.


Assuntos
Drosophila melanogaster , Olho , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Hippo , Fígado , Transcrição Gênica , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Animais , Camundongos , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Olho/embriologia , Via de Sinalização Hippo/genética , Fígado/embriologia , Tamanho do Órgão , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo
5.
Oxid Med Cell Longev ; 2022: 4277254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299605

RESUMO

DNA topoisomerases (TOPs) are dysregulated in various types of cancer. However, how TOP II-alpha (TOP2A) contributes to hepatocellular carcinoma (HCC) progression remains elusive. Cohort analysis revealed that the increased expression of TOP2A was associated with poor clinical outcomes and TOP2A was significantly upregulated in HCC tissues and cell lines. In vitro, TOP2A expression level is related to cell invasion and migration, which may be due to the alteration of epithelial-mesenchymal transition by the TOP2A. Moreover, we used verteporfin (a Hippo inhibitor) to test how the Hippo pathway promotes the effect of TOP2A on the HCC phenotype and found that TOP2A induces tumor progression through the Hippo pathway. Finally, miR-22-5p inhibited tumor progression by sponging TOP2A.


Assuntos
Carcinoma Hepatocelular , DNA Topoisomerases Tipo II , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo/genética , Via de Sinalização Hippo/fisiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Verteporfina
6.
Proc Natl Acad Sci U S A ; 119(29): e2123134119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858357

RESUMO

Breast cancer is the most frequent malignancy in women worldwide. Basal-like breast cancer (BLBC) is the most aggressive form of this disease, and patients have a poor prognosis. Here, we present data suggesting that the Hippo-transcriptional coactivator with PDZ-binding motif (TAZ) pathway is a key driver of BLBC onset and progression. Deletion of Mob1a/b in mouse mammary luminal epithelium induced rapid and highly reproducible mammary tumorigenesis that was dependent on TAZ but not yes-associated protein 1 (YAP1). In situ early-stage BLBC-like malignancies developed in mutant animals by 2 wk of age, and invasive BLBC appeared by 4 wk. In a human estrogen receptor+ luminal breast cancer cell line, TAZ hyperactivation skewed the features of these luminal cells to the basal phenotype, consistent with the aberrant TAZ activation frequently observed in human precancerous BLBC lesions. TP53 mutation is rare in human precancerous BLBC but frequent in invasive BLBC. Addition of Trp53 deficiency to our Mob1a/b-deficient mouse model enhanced tumor grade and accelerated cancer progression. Our work justifies targeting the Hippo-TAZ pathway as a therapy for human BLBC, and our mouse model represents a powerful tool for evaluating candidate agents.


Assuntos
Via de Sinalização Hippo , Neoplasias Mamárias Experimentais , Lesões Pré-Cancerosas , Neoplasias de Mama Triplo Negativas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Via de Sinalização Hippo/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Experimentais/genética , Camundongos , Lesões Pré-Cancerosas/genética , Receptores de Estrogênio/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Sinalização YAP/genética
7.
Cells ; 11(14)2022 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-35883668

RESUMO

The Hippo pathway regulates tissue homeostasis in normal development and drives oncogenic processes. In this review, we extensively discuss how YAP/TAZ/TEAD cooperate with other master transcription factors and epigenetic cofactors to orchestrate a broad spectrum of transcriptional responses. Even though these responses are often context- and lineage-specific, we do not have a good understanding of how such precise and specific transcriptional control is achieved-whether they are driven by differences in TEAD paralogs, or recruitment of cofactors to tissue-specific enhancers. We believe that emerging single-cell technologies would enable a granular understanding of how the Hippo pathway influences cell fate and drives oncogenic processes, ultimately allowing us to design better pharmacological agents against TEADs and identify robust pharmacodynamics markers of Hippo pathway inhibition.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Análise de Célula Única , Carcinogênese , Regulação da Expressão Gênica , Via de Sinalização Hippo/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(25): e2121779119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704761

RESUMO

Cell surface proteins play essential roles in various biological processes and are highly related to cancer development. They also serve as important markers for cell identity and targets for pharmacological intervention. Despite their great potentials in biomedical research, comprehensive functional analysis of cell surface proteins remains scarce. Here, with a de novo designed library targeting cell surface proteins, we performed in vivo CRISPR screens to evaluate the effects of cell surface proteins on tumor survival and proliferation. We found that Kirrel1 loss markedly promoted tumor growth in vivo. Moreover, KIRREL was significantly enriched in a separate CRISPR screen based on a specific Hippo pathway reporter. Further studies revealed that KIRREL binds directly to SAV1 to activate the Hippo tumor suppressor pathway. Together, our integrated screens reveal a cell surface tumor suppressor involved in the Hippo pathway and highlight the potential of these approaches in biomedical research.


Assuntos
Genes Supressores de Tumor , Via de Sinalização Hippo , Proteínas de Membrana , Neoplasias , Animais , Proliferação de Células/genética , Via de Sinalização Hippo/genética , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais
9.
Nat Commun ; 13(1): 703, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121738

RESUMO

Rho family mechano-signaling through the actin cytoskeleton positively regulates physiological TEAD/YAP transcription, while the evolutionarily conserved Hippo tumor suppressor pathway antagonizes this transcription through YAP cytoplasmic localization/degradation. The mechanisms responsible for oncogenic dysregulation of these pathways, their prevalence in tumors, as well as how such dysregulation can be therapeutically targeted are not resolved. We demonstrate that p53 DNA contact mutants in human tumors, indirectly hyperactivate RhoA/ROCK1/actomyosin signaling, which is both necessary and sufficient to drive oncogenic TEAD/YAP transcription. Moreover, we demonstrate that recurrent lesions in the Hippo pathway depend on physiological levels of ROCK1/actomyosin signaling for oncogenic TEAD/YAP transcription. Finally, we show that ROCK inhibitors selectively antagonize proliferation and motility of human tumors with either mechanism. Thus, we identify a cancer driver paradigm and a precision medicine approach for selective targeting of human malignancies driven by TEAD/YAP transcription through mechanisms that either upregulate or depend on homeostatic RhoA mechano-signaling.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias/genética , Transdução de Sinais/genética , Fatores de Transcrição de Domínio TEA/genética , Fatores de Transcrição/genética , Quinases Associadas a rho/genética , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética , Humanos , Camundongos SCID , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição de Domínio TEA/metabolismo , Fatores de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Curr Biol ; 32(5): 1064-1076.e4, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35134324

RESUMO

Mutations in the tumor-suppressor Hippo pathway lead to activation of the transcriptional coactivator Yorkie (Yki), which enhances cell proliferation autonomously and causes cell death non-autonomously. While Yki-induced cell proliferation has extensively been studied, the mechanism by which Yki causes cell death in nearby wild-type cells, a phenomenon called supercompetition, and its role in tumorigenesis remained unknown. Here, we show that Yki-induced supercompetition is essential for tumorigenesis and is driven by non-autonomous induction of autophagy. Clones of cells mutant for a Hippo pathway component fat activate Yki and cause autonomous tumorigenesis and non-autonomous cell death in Drosophila eye-antennal discs. Through a genetic screen in Drosophila, we find that mutations in autophagy-related genes or NF-κB genes in surrounding wild-type cells block both fat-induced tumorigenesis and supercompetition. Mechanistically, fat mutant cells upregulate Yki-target microRNA bantam, which elevates protein synthesis levels via activation of TOR signaling. This induces elevation of autophagy in neighboring wild-type cells, which leads to downregulation of IκB Cactus and thus causes NF-κB-mediated induction of the cell death gene hid. Crucially, upregulation of bantam is sufficient to make cells to be supercompetitors and downregulation of endogenous bantam is sufficient for cells to become losers of cell competition. Our data indicate that cells with elevated Yki-bantam signaling cause tumorigenesis by non-autonomous induction of autophagy that kills neighboring wild-type cells.


Assuntos
Autofagia , Competição entre as Células , Proteínas de Drosophila , MicroRNAs , Proteínas de Sinalização YAP , Animais , Autofagia/genética , Carcinogênese , Competição entre as Células/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Via de Sinalização Hippo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
11.
J Exp Clin Cancer Res ; 41(1): 19, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012593

RESUMO

BACKGROUND: Colorectal carcinoma (CRC) is the third most common cancer and second most common cause of cancer-related deaths worldwide. Ribonucleic acid (RNA) N6-methyladnosine (m6A) and methyltransferase-like 3 (METTL3) play key roles in cancer progression. However, the roles of m6A and METTL3 in CRC progression require further clarification. METHODS: Adenoma and CRC samples were examined to detect m6A and METTL3 levels, and tissue microarrays were performed to evaluate the association of m6A and METTL3 levels with the survival of patients with CRC. The biological functions of METTL3 were investigated through cell counting kit-8, wound healing, and transwell assays. M6A epitranscriptomic microarray, methylated RNA immunoprecipitation-qPCR, RNA stability, luciferase reporter, and RNA immunoprecipitation assays were performed to explore the mechanism of METTL3 in CRC progression. RESULTS: M6A and METTL3 levels were substantially elevated in CRC tissues, and patients with CRC with a high m6A or METTL3 levels exhibited shorter overall survival. METTL3 knockdown substantially inhibited the proliferation, migration, and invasion of CRC cells. An m6A epitranscriptomic microarray revealed that the cell polarity regulator Crumbs3 (CRB3) was the downstream target of METTL3. METTL3 knockdown substantially reduced the m6A level of CRB3, and inhibited the degradation of CRB3 mRNA to increase CRB3 expression. Luciferase reporter assays also showed that the transcriptional level of wild-type CRB3 significantly increased after METTL3 knockdown but not its level of variation. Knockdown of YT521-B homology domain-containing family protein 2 (YTHDF2) substantially increased CRB3 expression. RNA immunoprecipitation assays also verified the direct interaction between the YTHDF2 and CRB3 mRNA, and this direct interaction was impaired after METTL3 inhibition. In addition, CRB3 knockdown significantly promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, METTL3 knockdown activated the Hippo pathway and reduced nuclear localization of Yes1-associated transcriptional regulator, and the effects were reversed by CRB3 knockdown. CONCLUSIONS: M6A and METTL3 levels were substantially elevated in CRC tissues relative to normal tissues. Patients with CRC with high m6A or METTL3 levels exhibited shorter overall survival, and METTL3 promoted CRC progression. Mechanistically, METTL3 regulated the progression of CRC by regulating the m6A-CRB3-Hippo pathway.


Assuntos
Neoplasias Colorretais/genética , Via de Sinalização Hippo/genética , Metiltransferases/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Invasividade Neoplásica , Transfecção
12.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119201, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026349

RESUMO

Hippo signaling is known to maintain balance between cell proliferation and apoptosis via tight regulation of factors, such as metabolic cues, cell-cell contact, and mechanical cues. Cells directly recognize glucose, lipids, and other metabolic cues and integrate multiple signaling pathways, including Hippo signaling, to adjust their proliferation and apoptosis depending on nutrient conditions. Therefore, the dysregulation of the Hippo signaling pathway can promote tumor initiation and progression. Alteration in metabolic cues is considered a major factor affecting the risk of cancer formation and progression. It has recently been shown that the dysregulation of the Hippo signaling pathway, through diverse routes activated by metabolic cues, can lead to cancer with a poor prognosis. In addition, unique crosstalk between metabolic pathways and Hippo signaling pathways can inhibit the effect of anticancer drugs and promote drug resistance. In this review, we describe an integrated perspective of the relationship between the Hippo signaling pathway and metabolic signals in the context of cancer. We also characterize the mechanisms involved in changes in metabolism that are linked to the Hippo signaling pathway in the cancer microenvironment and propose several novel targets for anticancer drug treatment.


Assuntos
Via de Sinalização Hippo , Redes e Vias Metabólicas , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glucose/metabolismo , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética , Humanos , Metabolismo dos Lipídeos/genética , Redes e Vias Metabólicas/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053353

RESUMO

In this paper, we investigate whether Wnt5A is associated with the TGF-ß1/Smad2/3 and Hippo-YAP1/TAZ-TEAD pathways, implicated in epithelial to mesenchymal transition (EMT) in epithelial ovarian cancer. We used 3D and 2D cultures of human epithelial ovarian cancer cell lines SKOV-3, OVCAR-3, CAOV-4, and different subtypes of human serous ovarian cancer compared to normal ovary specimens. Wnt5A showed a positive correlation with TAZ and TGFß1 in high- and low-grade serous ovarian cancer specimens compared to borderline serous and normal ovaries. Silencing Wnt5A by siRNAs significantly decreased Smad2/3 activation and YAP1 expression and nuclear shuttling in ovarian cancer (OvCa) cells. Furthermore, Wnt5A was required for TGFß1-induced cell migration and invasion. In addition, inhibition of YAP1 transcriptional activity by Verteporfin (VP) altered OvCa cell migration and invasion through decreased Wnt5A expression and inhibition of Smad2/3 activation, which was reverted in the presence of exogenous Wnt5A. We found that the activation of TGFß1 and YAP1 nuclear shuttling was promoted by Wnt5A-induced integrin alpha v. Lastly, Wnt5A was implicated in activating human primary omental mesothelial cells and subsequent invasion of ovarian cancer cells. Together, we propose that Wnt5A could be a critical mediator of EMT-associated pathways.


Assuntos
Transição Epitelial-Mesenquimal/genética , Epitélio/patologia , Integrina alfaV/metabolismo , Neoplasias Ovarianas/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Proteína Wnt-5a/metabolismo , Proteínas de Sinalização YAP/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo/genética , Humanos , Modelos Biológicos , Invasividade Neoplásica , Neoplasias Ovarianas/patologia , Fosforilação , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Transcrição Gênica , Regulação para Cima/genética
14.
Bioengineered ; 13(2): 2586-2597, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35037825

RESUMO

Wogonin is an effective component of Scutellaria baicalensis Georgi, which exhibits anti-tumor activity. The aim of this study was to explore the effects of wogonin on colon cancer (CC). Human CC cell lines, SW480 and HCT116, were cultured, and MTT assay was performed to detect cell survival. RT-qPCR and Western blotting were used to measure mRNA and protein expression, respectively. The migration and invasion abilities of the CC cells were determined by a transwell assay. Immunofluorescence staining was performed to determine the localization of IRF3. Xenograft mice were used to investigate the effects of wogonin on CC in vivo. Wogonin inhibited the survival and metastasis of CC cells. In addition, wogonin suppressed epithelial-mesenchymal transition (EMT). Furthermore, the protein expression of YAP1 and IRF3 was downregulated, and p-YAP1 was upregulated after wogonin treatment. Wogonin also suppressed IRF3 expression in the nuclei of CC cells and overexpression of YAP1 reversed the effects of wogonin in CC cells. Finally, wogonin inhibited the tumor growth in the mice and overexpression of YAP1 reversed the wogonin effects. Thus, these results showed that wogonin relieved the carcinogenic behaviors and EMT of CC cells via the IRF3-mediated Hippo signaling pathway.


Assuntos
Neoplasias do Colo , Flavanonas/farmacologia , Via de Sinalização Hippo , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Lett ; 527: 174-190, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34929335

RESUMO

Growing evidence suggests that the bidirectional interactions between cancer cells and their surrounding environment, namely the tumor microenvironment (TME), contribute to cancer progression, metastasis, and resistance to treatment. Intense investigation of the Hippo pathway, which controls multiple central cellular functions in tumorigenesis, was focused on cancer cells. However, the role of the Hippo pathway in modulating tumor-stromal interactions in triple-negative breast cancer remains largely unknown. Therefore, this study focused on revealing the effects of Hippo-YAP/TAZ signaling on the immune microenvironment. Our findings reveal that the activity of the Hippo pathway is associated with worse disease outcomes in TNBC and could increase TAM infiltration through the TAZ/IL-34 axis, leading to an immunosuppressive microenvironment and impairing the treatment efficacy of anti-PD-L1. Thus, the TAZ/IL-34 axis may serve as a novel target for TNBC patients.


Assuntos
Via de Sinalização Hippo/genética , Interleucinas/metabolismo , Macrófagos/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Carcinogênese , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Microambiente Tumoral
16.
FEBS Lett ; 596(4): 449-464, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855209

RESUMO

The Hippo signaling pathway is critical for carcinogenesis. However, the roles of the Hippo signaling pathway in the tumor immune microenvironment have been rarely investigated. This study systematically analyzed the relationship between the Hippo signaling pathway and immune cell infiltration across 32 cancer types. Both bioinformatics analyses and biological experiments revealed that the downstream effector of Hippo signaling YAP1 might inhibit CD8+ T cell infiltration by upregulating the expression of the transcription factor CREB1 in uterine corpus endometrial carcinoma. In addition, esophageal carcinoma (ESCA) patients were classified into three subtypes based on the Hippo-immune gene panel. The subtypes of ESCA had distinct characteristics in immune cell infiltration, immune pathways, and prognosis. Thus, this study also reveals a new classification of the immune subtypes with prognostic characteristics in ESCA.


Assuntos
Neoplasias do Endométrio/genética , Neoplasias Esofágicas/genética , Via de Sinalização Hippo/genética , Neoplasias/genética , Microambiente Tumoral/genética , Proteínas de Sinalização YAP/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Movimento Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Neoplasias/classificação , Neoplasias/imunologia , Neoplasias/patologia , Prognóstico , Proteômica/métodos , Receptores de Antígenos de Linfócitos B/classificação , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/classificação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Sobrevida , Terminologia como Assunto , Proteínas de Sinalização YAP/imunologia
17.
Hum Cell ; 35(1): 333-347, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825342

RESUMO

The ectopic expression of ubiquitin-specific peptidase 21 (USP21) is common in different types of cancer. However, its relationship with radio-sensitivity in cervical cancer (CC) remains unclear. In this study, we aimed to uncover the effect of USP21 on CC radio-resistance and its underlying mechanism. Our results showed that the expression of USP21 was markedly increased in CC tissues of radio-resistant patients and CC cells treated with radiation. Besides, knockdown of USP21 restrained the survival fractions, and facilitated apoptosis of CC cells in the absence or presence of radiation. Additionally, USP21 in combination with FOXM1 regulated the stability and ubiquitination of FOXM1. However, FOXM1 reversed the effects of USP21 knockdown on the radio-resistance of CC cells. Furthermore, FOXM1 knockdown activated the Hippo pathway by inhibiting the nuclear translocation of Yes-associated protein 1 (YAP1), and FOXM1 knockdown attenuated the radio-resistance of CC cells via inhibiting the Hippo-YAP1 pathway. USP21 activated the Hippo pathway by mediating FOXM1. Knockdown of USP21 enhanced the radio-sensitivity of CC cells in vivo. In summary, USP21 contributed to the radio-resistance of CC cells via FOXM1/Hippo signaling, and may serve as a promising target for radio-sensitizers in the radiotherapy of CC.


Assuntos
Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Via de Sinalização Hippo/genética , Via de Sinalização Hippo/fisiologia , Tolerância a Radiação/genética , Ubiquitina Tiolesterase/fisiologia , Ubiquitinação , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Linhagem Celular Tumoral , Feminino , Humanos , Radiossensibilizantes , Neoplasias do Colo do Útero/patologia , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
18.
Bioengineered ; 12(2): 12357-12371, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931960

RESUMO

Obstructive renal fibrosis is the consequence of abnormal extracellular matrix assembly, which eventually results in renal failure, acute, and end­stage renal infection. MicroRNAs (miRNAs), a particular category of small RNAs, modulate the expression of genes post-transcriptionally and regulate biological activities, including fibrogenesis. The study probed to estimate the key functions of miR-4709-3p in obstructive renal fibrosis. This investigation used TGF-ß1 stimulated HK-2 in-vitro model, unilateral ureteral occlusion (UUO) mice model, and human Diabetic nephropathy (DN) and Renal interstitial fibrosis (RIF) specimens to depict the abundance of the miR-4709-3p level using FISH and RT-qPCR. MiR-4709-3p mimics and inhibitors were utilized to evaluate the functions of miR-4709-3p in-vitro. Luciferase assay was exploited to verify miR-4709-3p and LATS2 3'UTR binding. Finally, to depict the functions of miR-4709-3p in-vivo, the UUO model was injected with miR-4709-3p inhibitors. Results exhibited the upregulation of miR-4709-3p in UUO-induced in-vivo model, TGF-ß1 stimulated HK-2, and human RIF and DN samples. Moreover, it was determined that modulating miR-4709-3p regulated the level of fibrosis markers. Luciferase assay miR-4709-3p modulates renal fibrosis by targeting LATS2. Finally, it was found that miR-4709-3p regulates obstructive renal fibrosis through the Hippo signaling pathway. Overall, the study concludes that aberrant miR-4709-3p expression plays an essential function in the renal fibrosis progression, and miR-4709-3p overexpression could advance obstructive renal fibrosis via LATS2 targeting in Hippo signaling pathway. Therefore, miR-4709-3p inhibition may be a potential renal fibrosis therapy target.


Assuntos
Fibrose/genética , Via de Sinalização Hippo/genética , Nefropatias/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Regiões 3' não Traduzidas/genética , Idoso , Animais , Linhagem Celular , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genética
19.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948224

RESUMO

Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy. Due to the high recurrence of GBM after treatment, the understanding of the chemoresistance phenomenon and how to stimulate the antitumor immune response in this pathology is crucial. The deregulation of the Hippo pathway is involved in tumor genesis, chemoresistance and immunosuppressive nature of GBM. This pathway is an evolutionarily conserved signaling pathway with a kinase cascade core, which controls the translocation of YAP (Yes-Associated Protein)/TAZ (Transcriptional Co-activator with PDZ-binding Motif) into the nucleus, leading to regulation of organ size and growth. With this review, we want to highlight how chemoresistance and tumor immunosuppression work in GBM and how the Hippo pathway has a key role in them. We linger on the role of the Hippo pathway evaluating the effect of its de-regulation among different human cancers. Moreover, we consider how different pathways are cross-linked with the Hippo signaling in GBM genesis and the hypothetical mechanisms responsible for the Hippo pathway activation in GBM. Furthermore, we describe various drugs targeting the Hippo pathway. In conclusion, all the evidence described largely support a strong involvement of the Hippo pathway in gliomas progression, in the activation of chemoresistance mechanisms and in the development of an immunosuppressive microenvironment. Therefore, this pathway is a promising target for the treatment of high grade gliomas and in particular of GBM.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma , Via de Sinalização Hippo/genética , Proteínas de Neoplasias , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
20.
Biol Open ; 10(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34792099

RESUMO

First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Sepideh Fallah is first author on ' Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1', published in BiO. Sepideh is a postdoctoral researcher in the lab of Prof. Jean-François Beaulieu at Université de Sherbrooke, Quebec, Canada, investigating how SFKs negatively regulate the differentiation of absorptive and goblet cells through upregulating of YAP1 activity.


Assuntos
Diferenciação Celular/genética , Células Epiteliais/enzimologia , Via de Sinalização Hippo/genética , Proteínas de Sinalização YAP/fisiologia , Quinases da Família src/fisiologia , Células CACO-2 , Humanos , Intestinos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...